Publications by Harry Joe
2016
        . Multivariate models for dependent clusters of variables with conditional independence given aggregation variables. Computational Statistics & Data Analysis. 2016;97:114-132.   
          . Comparison of non-nested models under a general measure of distance. Journal of Statistical Planning and Inference. Elsevier Science BV; 2016;170:166-185.   
  2015
        . Markov count time series models with covariates. In: . Handbook of Discrete-Valued Time Series [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2015. pp. 29–49. http://www.crcpress.com/product/isbn/9781466577732  
          . Clinical and molecular predictors of mortality in neurofibromatosis 2: a UK national analysis of 1192 patients. Journal of Medical Genetics. BMJ Publishing Group; 2015;52:699-705.   
          . Preface to special issue on high-dimensional dependence and copulas. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:1-3.   
          . Truncation of vine copulas using fit indices. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:19-33.   
          . Structured factor copula models: Theory, inference and computation. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:53-73.   
          . Tail-weighted measures of dependence. Journal of Applied Statistics. Taylor & Francis Ltd; 2015;42:614-629.   
          . Factor copula models for item response data. Psychometrika. Springer; 2015;80:126-150.   
  2014
        . Parsimonious parameterization of correlation matrices using truncated vines and factor analysis. Computational Statistics & Data Analysis. Elsevier Science BV; 2014;77:233-251.   
          . Dependence Modeling with Copulas [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2014. http://www.crcpress.com/product/isbn/9781466583221  
          . Relations between hidden regular variation and the tail order of copulas. Journal of Applied Probability. Applied Probability Trust; 2014;51:37-57.   
          . Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research. Routledge Journals, Taylor & Francis Ltd; 2014;49:305-328.   
          . Strength of tail dependence based on conditional tail expectation. Journal of Multivariate Analysis. Elsevier Inc; 2014;123:143-159.   
          . Model comparison with composite likelihood information criteria. Bernoulli. Int Statistical Inst; 2014;20:1738-1764.   
  2013
        . A Bayesian extreme value analysis of debris flows. Water Resources Research. Amer Geophysical Union; 2013;49:7009-7022.   
          . Factor copula models for multivariate data. Journal of Multivariate Analysis. Elsevier Inc; 2013;120:85-101.   
          . Measures of tail asymmetry for bivariate copulas. Statistical Papers. Springer; 2013;54:709-726.   
          . Simplified pair copula constructions: Limitations and extensions. Journal of Multivariate Analysis. Elsevier Inc; 2013;119:101-118.   
          . Intermediate tail dependence: a review and some new results. In: . Stochastic Orders in Reliability and Risk. New York: Springer; 2013. pp. 291-311.   
  2012
        . Book Review of ``Inequalities: Theory of Majorization and Its Applications, by AW Marshall, I. Olkin and BC Arnold, Springer". Probability in the Engineering and Informational Sciences. Cambridge University Press; 2012;26:449–453.   
          . Multivariate inverse Gaussian and skew-normal densities. Statistics & Probability Letters. Elsevier Science BV; 2012;82:2244-2251.   
          . Tail comonotonicity and conservative risk measures. ASTIN Bulletin. Peeters; 2012;42:601-629.   
          . Vine copulas with asymmetric tail dependence and applications to financial return data. Computational Statistics & Data Analysis. Elsevier Science BV; 2012;56:3659-3673.   
          . Pair copula constructions for multivariate discrete data. Journal of the American Statistical Association. Amer Statistical Assoc; 2012;107:1063-1072.   
          . Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures. Insurance Mathematics & Economics. Elsevier Science BV; 2012;51:492-503.   
  2011
        . Tail risk of multivariate regular variation. Methodology and Computing in Applied Probability. Springer; 2011;13:671-693.   
          . Regular vines: generation algorithm and number of equivalence classes. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 219–231.   
          . Second order regular variation and conditional tail expectation of multiple risks. Insurance Mathematics & Economics. Elsevier Science BV; 2011;49:537-546.   
          . Tail order and intermediate tail dependence of multivariate copulas. Journal of Multivariate Analysis. Elsevier Inc; 2011;102:1454-1471.   
          . Weighted scores method for regression models with dependent data. Biostatistics. Oxford Univ Press; 2011;12:653-665.   
          . Empirical development of improved diagnostic criteria for neurofibromatosis 2. Genetics in Medicine. Nature Publishing Group; 2011;13:576-581.   
          . Modelling species abundance using the Poisson-Tweedie family. Environmetrics. Wiley-Blackwell; 2011;22:152-164.   
          . Composite likelihood for time series models with a latent autoregressive process. Statistica Sinica [Internet]. {Statistica Sinica, TAIWAN; 2011;21:279-305. http://www3.stat.sinica.edu.tw/statistica/j21n1/J21N112/J21N112.html  
          . Dependence Modeling: Vine Copula Handbook [Internet]. Singapore: World Scientific; 2011. http://www.worldscibooks.com/economics/7699.html  
          . Vines arise. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific Publishing Company; 2011. pp. 37–71.   
          . Micro correlations and tail dependence. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 89–112.   
          . Dependence comparisons of vine copulae in four or more variables. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 139–164.   
          . Tail dependence in vine copulae. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 165–187.   
  2010
        . A general family of limited information goodness-of-fit statistics for multinomial data [Internet]. . Dependence Modeling: Vine Copula Handbook. Singapore: Springer; 2010. pp. 393-419. {http://www.worldscibooks.com/economics/7699.html doi = 10.1142/9789814299886,  @InCollectionCooke.Joe.ea2011  
          . Generating random AR(p) and MA(q) Toeplitz correlation matrices. Journal of Multivariate Analysis. Elsevier Inc; 2010;101:1532-1545.   
          . Negative binomial time series models based on expectation thinning operators. Journal of Statistical Planning and Inference. Elsevier Science BV; 2010;140:1874-1888.   
          . Tail dependence functions and vine copulas. Journal of Multivariate Analysis. Elsevier Inc; 2010;101:252-270.   
          . Count data time series models based on expectation thinning. Stochastic Models. Taylor & Francis Inc; 2010;26:PII 925211404.   
  2009
        . Diagnosing multivariate outliers detected by robust estimators. Journal of Computational and Graphical Statistics. Amer Statistical Assoc; 2009;18:73-91.   
          . Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis. Elsevier Inc; 2009;100:1989-2001.   
          . Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family. Statistics & Probability Letters. Elsevier Science BV; 2009;79:1695-1703.   
          . Extreme value properties of multivariate t copulas. Extremes. Springer; 2009;12:129-148.   
          . On weighting of bivariate margins in pairwise likelihood. Journal of Multivariate Analysis. Elsevier Inc; 2009;100:670-685.   
  2008
        . Accuracy of Laplace approximation for discrete response mixed models. Computational Statistics & Data Analysis. Elsevier Science BV; 2008;52:5066-5074.