Our Department

Department Alumni Fest 2016

Subscribe to email list

Please select the email list(s) to which you wish to subscribe.

User menu

Publications by Harry Joe

2016

Joe H, Sang P. Multivariate models for dependent clusters of variables with conditional independence given aggregation variables. Computational Statistics & Data Analysis. 2016;97:114-132.
Ng CT, Joe H. Comparison of non-nested models under a general measure of distance. Journal of Statistical Planning and Inference. Elsevier Science BV; 2016;170:166-185.

2015

Joe H. Markov count time series models with covariates. In: Davis RA, Holan SH, Lund RB, Ravishanker N. Handbook of Discrete-Valued Time Series [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2015. pp. 29–49. http://www.crcpress.com/product/isbn/9781466577732
Hexter A, Jones A, Joe H, Heap L, Smith MJ, Wallace AJ, et al. Clinical and molecular predictors of mortality in neurofibromatosis 2: a UK national analysis of 1192 patients. Journal of Medical Genetics. BMJ Publishing Group; 2015;52:699-705.
Joe H, Cai J, Czado C, Li H. Preface to special issue on high-dimensional dependence and copulas. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:1-3.
Brechmann EC, Joe H. Truncation of vine copulas using fit indices. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:19-33.
Krupskii P, Joe H. Structured factor copula models: Theory, inference and computation. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:53-73.
Krupskii P, Joe H. Tail-weighted measures of dependence. Journal of Applied Statistics. Taylor & Francis Ltd; 2015;42:614-629.
Nikoloulopoulos AK, Joe H. Factor copula models for item response data. Psychometrika. Springer; 2015;80:126-150.

2014

Ng CT, Joe H. Model comparison with composite likelihood information criteria. Bernoulli. Int Statistical Inst; 2014;20:1738-1764.
Brechmann EC, Joe H. Parsimonious parameterization of correlation matrices using truncated vines and factor analysis. Computational Statistics & Data Analysis. Elsevier Science BV; 2014;77:233-251.
Joe H. Dependence Modeling with Copulas [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2014. http://www.crcpress.com/product/isbn/9781466583221
Hua L, Joe H, Li H. Relations between hidden regular variation and the tail order of copulas. Journal of Applied Probability. Applied Probability Trust; 2014;51:37-57.
Maydeu-Olivares A, Joe H. Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research. Routledge Journals, Taylor & Francis Ltd; 2014;49:305-328.
Hua L, Joe H. Strength of tail dependence based on conditional tail expectation. Journal of Multivariate Analysis. Elsevier Inc; 2014;123:143-159.

2013

Nolde N, Joe H. A Bayesian extreme value analysis of debris flows. Water Resources Research. Amer Geophysical Union; 2013;49:7009-7022.
Krupskii P, Joe H. Factor copula models for multivariate data. Journal of Multivariate Analysis. Elsevier Inc; 2013;120:85-101.
Rosco JF, Joe H. Measures of tail asymmetry for bivariate copulas. Statistical Papers. Springer; 2013;54:709-726.
Stoeber J, Joe H, Czado C. Simplified pair copula constructions: Limitations and extensions. Journal of Multivariate Analysis. Elsevier Inc; 2013;119:101-118.
Hua L, Joe H. Intermediate tail dependence: a review and some new results. In: Li H, Li X. Stochastic Orders in Reliability and Risk. New York: Springer; 2013. pp. 291-311.

2012

Joe H. Book Review of ``Inequalities: Theory of Majorization and Its Applications, by AW Marshall, I. Olkin and BC Arnold, Springer". Probability in the Engineering and Informational Sciences. Cambridge University Press; 2012;26:449–453.
Joe H, Seshadri V, Arnold BC. Multivariate inverse Gaussian and skew-normal densities. Statistics & Probability Letters. Elsevier Science BV; 2012;82:2244-2251.
Hua L, Joe H. Tail comonotonicity and conservative risk measures. ASTIN Bulletin. Peeters; 2012;42:601-629.
Nikoloulopoulos AK, Joe H, Li H. Vine copulas with asymmetric tail dependence and applications to financial return data. Computational Statistics & Data Analysis. Elsevier Science BV; 2012;56:3659-3673.
Panagiotelis A, Czado C, Joe H. Pair copula constructions for multivariate discrete data. Journal of the American Statistical Association. Amer Statistical Assoc; 2012;107:1063-1072.
Hua L, Joe H. Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures. Insurance Mathematics & Economics. Elsevier Science BV; 2012;51:492-503.

2011

El-Shaarawi AH, Zhu R, Joe H. Modelling species abundance using the Poisson-Tweedie family. Environmetrics. Wiley-Blackwell; 2011;22:152-164.
Ng CT, Joe H, Karlis D, Liu J. Composite likelihood for time series models with a latent autoregressive process. Statistica Sinica [Internet]. {Statistica Sinica, TAIWAN; 2011;21:279-305. http://www3.stat.sinica.edu.tw/statistica/j21n1/J21N112/J21N112.html
Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook [Internet]. Singapore: World Scientific; 2011. http://www.worldscibooks.com/economics/7699.html
Cooke RM, Joe H, Aas K. Vines arise. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific Publishing Company; 2011. pp. 37–71.
Cooke RM, Kousky C, Joe H. Micro correlations and tail dependence. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 89–112.
Joe H. Dependence comparisons of vine copulae in four or more variables. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 139–164.
Joe H. Tail dependence in vine copulae. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 165–187.
Joe H, Li H. Tail risk of multivariate regular variation. Methodology and Computing in Applied Probability. Springer; 2011;13:671-693.
Joe H, Cooke RM, Kurowicka D. Regular vines: generation algorithm and number of equivalence classes. In: Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 219–231.
Hua L, Joe H. Second order regular variation and conditional tail expectation of multiple risks. Insurance Mathematics & Economics. Elsevier Science BV; 2011;49:537-546.
Hua L, Joe H. Tail order and intermediate tail dependence of multivariate copulas. Journal of Multivariate Analysis. Elsevier Inc; 2011;102:1454-1471.
Nikoloulopoulos AK, Joe H, Chaganty NR. Weighted scores method for regression models with dependent data. Biostatistics. Oxford Univ Press; 2011;12:653-665.
Baser ME, Friedman JM, Joe H, Shenton A, Wallace AJ, Ramsden RT, et al. Empirical development of improved diagnostic criteria for neurofibromatosis 2. Genetics in Medicine. Nature Publishing Group; 2011;13:576-581.

2010

Joe H, Maydeu-Olivares A. A general family of limited information goodness-of-fit statistics for multinomial data [Internet]. Kurowicka D, Joe H. Dependence Modeling: Vine Copula Handbook. Singapore: Springer; 2010. pp. 393-419. {http://www.worldscibooks.com/economics/7699.html doi = 10.1142/9789814299886, @InCollectionCooke.Joe.ea2011
Ng CT, Joe H. Generating random AR(p) and MA(q) Toeplitz correlation matrices. Journal of Multivariate Analysis. Elsevier Inc; 2010;101:1532-1545.
Zhu R, Joe H. Negative binomial time series models based on expectation thinning operators. Journal of Statistical Planning and Inference. Elsevier Science BV; 2010;140:1874-1888.
Joe H, Li H, Nikoloulopoulos AK. Tail dependence functions and vine copulas. Journal of Multivariate Analysis. Elsevier Inc; 2010;101:252-270.
Zhu R, Joe H. Count data time series models based on expectation thinning. Stochastic Models. Taylor & Francis Inc; 2010;26:PII 925211404.

2009

Lewandowski D, Kurowicka D, Joe H. Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis. Elsevier Inc; 2009;100:1989-2001.
Zhu R, Joe H. Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family. Statistics & Probability Letters. Elsevier Science BV; 2009;79:1695-1703.
Nikoloulopoulos AK, Joe H, Li H. Extreme value properties of multivariate t copulas. Extremes. Springer; 2009;12:129-148.
Joe H, Lee Y. On weighting of bivariate margins in pairwise likelihood. Journal of Multivariate Analysis. Elsevier Inc; 2009;100:670-685.
Willems G, Joe H, Zamar R. Diagnosing multivariate outliers detected by robust estimators. Journal of Computational and Graphical Statistics. Amer Statistical Assoc; 2009;18:73-91.

2008

Joe H. Accuracy of Laplace approximation for discrete response mixed models. Computational Statistics & Data Analysis. Elsevier Science BV; 2008;52:5066-5074.

Pages