Publications by Harry Joe
2016
Multivariate models for dependent clusters of variables with conditional independence given aggregation variables. Computational Statistics & Data Analysis. 2016;97:114-132. .
Comparison of non-nested models under a general measure of distance. Journal of Statistical Planning and Inference. Elsevier Science BV; 2016;170:166-185. .
2015
Markov count time series models with covariates. In: . Handbook of Discrete-Valued Time Series [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2015. pp. 29–49. http://www.crcpress.com/product/isbn/9781466577732 .
Clinical and molecular predictors of mortality in neurofibromatosis 2: a UK national analysis of 1192 patients. Journal of Medical Genetics. BMJ Publishing Group; 2015;52:699-705. .
Preface to special issue on high-dimensional dependence and copulas. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:1-3. .
Truncation of vine copulas using fit indices. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:19-33. .
Structured factor copula models: Theory, inference and computation. Journal of Multivariate Analysis. Elsevier Inc; 2015;138:53-73. .
Tail-weighted measures of dependence. Journal of Applied Statistics. Taylor & Francis Ltd; 2015;42:614-629. .
Factor copula models for item response data. Psychometrika. Springer; 2015;80:126-150. .
2014
Model comparison with composite likelihood information criteria. Bernoulli. Int Statistical Inst; 2014;20:1738-1764. .
Parsimonious parameterization of correlation matrices using truncated vines and factor analysis. Computational Statistics & Data Analysis. Elsevier Science BV; 2014;77:233-251. .
Dependence Modeling with Copulas [Internet]. Boca Raton, FL: Chapman & Hall/CRC; 2014. http://www.crcpress.com/product/isbn/9781466583221 .
Relations between hidden regular variation and the tail order of copulas. Journal of Applied Probability. Applied Probability Trust; 2014;51:37-57. .
Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research. Routledge Journals, Taylor & Francis Ltd; 2014;49:305-328. .
Strength of tail dependence based on conditional tail expectation. Journal of Multivariate Analysis. Elsevier Inc; 2014;123:143-159. .
2013
A Bayesian extreme value analysis of debris flows. Water Resources Research. Amer Geophysical Union; 2013;49:7009-7022. .
Factor copula models for multivariate data. Journal of Multivariate Analysis. Elsevier Inc; 2013;120:85-101. .
Measures of tail asymmetry for bivariate copulas. Statistical Papers. Springer; 2013;54:709-726. .
Simplified pair copula constructions: Limitations and extensions. Journal of Multivariate Analysis. Elsevier Inc; 2013;119:101-118. .
Intermediate tail dependence: a review and some new results. In: . Stochastic Orders in Reliability and Risk. New York: Springer; 2013. pp. 291-311. .
2012
Book Review of ``Inequalities: Theory of Majorization and Its Applications, by AW Marshall, I. Olkin and BC Arnold, Springer". Probability in the Engineering and Informational Sciences. Cambridge University Press; 2012;26:449–453. .
Multivariate inverse Gaussian and skew-normal densities. Statistics & Probability Letters. Elsevier Science BV; 2012;82:2244-2251. .
Tail comonotonicity and conservative risk measures. ASTIN Bulletin. Peeters; 2012;42:601-629. .
Vine copulas with asymmetric tail dependence and applications to financial return data. Computational Statistics & Data Analysis. Elsevier Science BV; 2012;56:3659-3673. .
Pair copula constructions for multivariate discrete data. Journal of the American Statistical Association. Amer Statistical Assoc; 2012;107:1063-1072. .
Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures. Insurance Mathematics & Economics. Elsevier Science BV; 2012;51:492-503. .
2011
Modelling species abundance using the Poisson-Tweedie family. Environmetrics. Wiley-Blackwell; 2011;22:152-164. .
Composite likelihood for time series models with a latent autoregressive process. Statistica Sinica [Internet]. {Statistica Sinica, TAIWAN; 2011;21:279-305. http://www3.stat.sinica.edu.tw/statistica/j21n1/J21N112/J21N112.html .
Dependence Modeling: Vine Copula Handbook [Internet]. Singapore: World Scientific; 2011. http://www.worldscibooks.com/economics/7699.html .
Vines arise. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific Publishing Company; 2011. pp. 37–71. .
Micro correlations and tail dependence. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 89–112. .
Dependence comparisons of vine copulae in four or more variables. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 139–164. .
Tail dependence in vine copulae. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 165–187. .
Tail risk of multivariate regular variation. Methodology and Computing in Applied Probability. Springer; 2011;13:671-693. .
Regular vines: generation algorithm and number of equivalence classes. In: . Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific; 2011. pp. 219–231. .
Second order regular variation and conditional tail expectation of multiple risks. Insurance Mathematics & Economics. Elsevier Science BV; 2011;49:537-546. .
Tail order and intermediate tail dependence of multivariate copulas. Journal of Multivariate Analysis. Elsevier Inc; 2011;102:1454-1471. .
Weighted scores method for regression models with dependent data. Biostatistics. Oxford Univ Press; 2011;12:653-665. .
Empirical development of improved diagnostic criteria for neurofibromatosis 2. Genetics in Medicine. Nature Publishing Group; 2011;13:576-581. .
2010
A general family of limited information goodness-of-fit statistics for multinomial data [Internet]. . Dependence Modeling: Vine Copula Handbook. Singapore: Springer; 2010. pp. 393-419. {http://www.worldscibooks.com/economics/7699.html doi = 10.1142/9789814299886, @InCollectionCooke.Joe.ea2011 .
Generating random AR(p) and MA(q) Toeplitz correlation matrices. Journal of Multivariate Analysis. Elsevier Inc; 2010;101:1532-1545. .
Negative binomial time series models based on expectation thinning operators. Journal of Statistical Planning and Inference. Elsevier Science BV; 2010;140:1874-1888. .
Tail dependence functions and vine copulas. Journal of Multivariate Analysis. Elsevier Inc; 2010;101:252-270. .
Count data time series models based on expectation thinning. Stochastic Models. Taylor & Francis Inc; 2010;26:PII 925211404. .
2009
Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis. Elsevier Inc; 2009;100:1989-2001. .
Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family. Statistics & Probability Letters. Elsevier Science BV; 2009;79:1695-1703. .
Extreme value properties of multivariate t copulas. Extremes. Springer; 2009;12:129-148. .
On weighting of bivariate margins in pairwise likelihood. Journal of Multivariate Analysis. Elsevier Inc; 2009;100:670-685. .
Diagnosing multivariate outliers detected by robust estimators. Journal of Computational and Graphical Statistics. Amer Statistical Assoc; 2009;18:73-91. .
2008
Accuracy of Laplace approximation for discrete response mixed models. Computational Statistics & Data Analysis. Elsevier Science BV; 2008;52:5066-5074. .